Induciendo el “envejecimiento” de los tumores


Mariano Barbacid

Un artículo científico publicado en el último número de la revista Cancer Cell por el grupo que dirige Mariano Barbacid, del Centro Nacional de Investigaciones Oncológicas (CNIO), ofrece un excelente ejemplo de una de las nuevas vías terapéuticas que recientemente se han abierto en el tratamiento del cáncer, explotando el proceso de senescencia celular.

La estrategia consiste en inducir la senescencia celular de las células tumorales, consiguiendo así frenar de manera irreversible su proliferación. En una entrada anterior de este mismo blog tuvimos ocasión de explicar cuál es la función anti-tumoral del proceso de senescencia tumoral (ver “La senescencia celular nos protege frente al cáncer”). Desde su descripción como un proceso fisiológico de defensa natural frente a los inicios tumorales en el año 2005 (en cuatro artículos aparecidos en la revista Nature), la posibilidad de manipular esta vía como estrategia frente al crecimiento tumoral ha estado presente en la mente de muchos grupos de investigación.

Tinción de senescencia (azul) en tumor benigno de pulmón

Diversos laboratorios demostraron ya anteriormente que atacar el oncogén que dirige el proceso tumoral puede resultar efectivo induciendo senescencia celular. De modo similar, reactivando genes supresores de tumores (genes que median mecanismos de defensa anti-tumoral y que frecuentemente se encuentran silenciados o eliminados en tumores) se observó la efectividad de la senescencia celular controlando la progresión tumoral.

Una tercera vía, que también ha comenzado a ser explorada, consiste en lo que se denomina “letalidad sintética”. Eliminar una actividad que no es la iniciadora del proceso tumoral, pero de la cual depende de manera crítica la célula tumoral para su proliferación o supervivencia. Idealmente además, esta actividad debería ser selectivamente imprescindible para el crecimiento tumoral y no para el de la célula normal sana.

La investigación se ha realizado en modelos de ratón

El grupo de Mariano Barbacid trabaja de manera histórica con la familia de oncogenes Ras, habiendo sido el descubridor del primer oncogén humano, H-Ras, en 1982. A su regreso a España para dirigir el CNIO, inició proyectos de investigación que pretendían recrear en modelos animales el proceso de inducción oncogénica que se da en los pacientes de cáncer tras la activación de oncogenes. Uno de dichos modelos es el ratón knockin (ratón al que se le sustituye el locus endógeno por uno modificado) que expresa una variante oncogénica de K-Ras, un oncogén que se encuentra mutado en el 25% de los adenocarcinomas de pulmón humano. Los ratones knockin de K-Ras desarrollan también tumores de pulmón y representan una oportunidad perfecta para estudiar en mayor detalle el proceso tumoral y ensayar posibles vías terapéuticas.

Una de estas estrategias de intervención terapéutica consistió en estudiar la dependencia de los tumores originados por la mutación de K-Ras, de la actividad enzimática de CDK4, una kinasa implicada en el avance del ciclo celular y, por tanto, de la proliferación. Para ello, el grupo de Barbacid cruzó estos ratones con activación de K-Ras con otros generados previamente en su laboratorio y en los que se puede inducir la eliminación específica del gen que codifica CDK4. La falta de CDK4 tiene efectos moderados. La descripción que de ellos realizó previamente el grupo de Barbacid había identificado únicamente un defecto en la producción de insulina por parte de las células beta del páncreas y esterilidad de las hembras.

Seguimiento por imagen molecular de los pulmones de los ratones

Cuando se activa K-Ras oncogénico y simultáneamente se elimina CDK4, los investigadores observaron cómo las células que portan la mutación oncogénica permanecen paradas, sin proliferar, y por tanto no dan lugar a tumores. Las células permanecen en ese estado, como congeladas, durante todo el tiempo que fueron seguidas, lo que llevó a los investigadores a plantearse la posibilidad de que se estuviese induciendo el proceso de senescencia celular, caracterizado precisamente por esa parada proliferativa irreversible. Cuando se examinaron con detalle los pulmones de estos animales, se pudo comprobar que, efectivamente, la activación de K-Ras con eliminación simultánea de CDK4 conduce a senescencia celular de manera inmediata.

Cabe destacar que la eliminación de CDK4 no causa ningún problema en las células normales del pulmón, lo cual representa, como decíamos al inicio, un excelente ejemplo de “letalidad sintética”, aprovechando la dependencia de la célula tumoral de una actividad enzimática para atacar al tumor sin dañar a las células sanas.

Los mismos principios fueron también validados empleando líneas celulares en cultivo derivadas de adenocarcinomas de pulmón humanos que portan mutaciones activadoras en el oncogén K-Ras, demostrando la relevancia de las observaciones en ratón. Más aún, empleando un inhibidor sintético específico de CDK4 y desarrollado por la empresa farmacéutica Pfizer, se consiguieron resultados similares, aunque no tan espectaculares como los observados en ratón, algo no sorprendente si tenemos en cuenta la potencia de la manipulación genética frente al efecto de un fármaco.

Imagen del Centro Nacional de Investigaciones Oncológicas (CNIO)

No obstante cabe resaltar la sensata prudencia del Dr Barbacid frente a la habitual ligereza con que se trata la información científica en la prensa, cuando deja claro que «estos resultados representan tan solo una indicación de un fenómeno biológico no predecible con los conocimientos existentes, pero en ningún momento garantiza que estas observaciones puedan ser reproducidas en pacientes con adenocarcinoma de pulmón por muy sofisticado que sean los modelos murinos en los que se han llevado a cabo estas investigaciones«. No obstante, en colaboración con el Dr Manuel Hidalgo, jefe de la unidad de Investigación Clínica del mismo centro, se iniciarán próximamente ensayos clínicos con pacientes para evaluar la eficacia de esta estrategia de inhibición de CDK4 en tumores de pulmón con mutación en K-Ras.

Para terminar, habría que resaltar dos aspectos importantes derivados de esta investigación. El primero, más específico, sería la efectividad en el tratamiento anti-tumoral de la inducción de senescencia celular. Este tipo de resultados son prometedores puesto que aportan toda una nueva vía de exploración de potenciales tratamientos anti-tumorales, distintos a los ya clásicos, más destinados a inducir la muerte de la célula tumoral. El segundo, más general, nos habla de la importancia de la investigación básica, como método eficaz para identificar procesos que se puedan demostrar posteriormente como relevantes en la aplicación clínica. Sin modelos animales experimentales no podríamos llegar a revelar la importancia de la “letalidad sintética” entre K-Ras oncogénico y CDK4.

Artículo original:

Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría D, & Barbacid M (2010). A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer cell, 18 (1), 63-73 PMID: 20609353

Senescencia celular y cáncer


Describíamos en una entrada anterior, dedicada a las causas moleculares del envejecimiento, que en los años 60 Len Hayflick describió el proceso de senescencia celular; aquel por el cual todas las células somáticas de un organismo, cuando son puestas en cultivo proliferan de manera normal hasta experimentar una serie de cambios morfológicos que acompañan la parada irreversible en su capacidad de dividirse. Estas observaciones fueron pioneras y marcaron el inicio de un campo de estudio en la capacidad proliferativa limitada de las células. Pero su descripción resultó complicada. Cuando Hayflick redactó sus observaciones y mandó sus resultados a publicar a la revista Journal of Experimental Medicine, la contestación negativa que recibió vino acompañada de un comentario «nada agradable» por parte del editor encargado de examinar su trabajo, Peyton Rous, posteriormente galardonado con el premio Nobel en el año 1966 por sus pioneras observaciones sobre la transmisión de ciertos tipos de cáncer y las infecciones virales. Según Rous, el único motivo por el cual las células que Hayflick había extraído de humanos, puesto en cultivo e intentado expandir, habían cesado en su proliferación era por su incapacidad e ineptitud para cultivar células, puesto que todas las células puestas en cultivo, son esencialmente inmortales.

“El mayor hecho derivado de la investigación en cultivos celulares de los últimos 50 años es que las células, capaces de manera innata de multiplicarse, lo harán indefinidamente si se les suministra el medio adecuado para ello” Peyton Rous

Y ahí está el quid de la cuestión. Desde que Ross Harrison en el año 1907 iniciase la época del cultivo de células animales, los pioneros de esta novedosa tecnología habían tenido que desarrollar medios nutritivos en los que mantener las células y ser especialmente cuidadosos con las contaminaciones (por aquel entonces aún no se conocían los antibióticos).

Ross Granville Harrison
Ross Granville Harrison

Pero los primeros éxitos, como los del cirujano francés afincado en Nueva York y ganador del premio Nobel, Alexis Carrel, que consiguió establecer cultivos de células de embrión de pollo que se mantuvieron vivos durante 34 años (dos años más de los que vivió el mismo Carrel) y en especial el cultivo de la línea de células tumorales HeLa por George Gey en 1952, parecían indicar que las células extraídas de los tejidos eran esencialmente inmortales y podían ser propagadas y mantenidas indefinidamente en cultivo. Estas observaciones llevaron a la aceptación generalizada de la idea de que las células individuales del organismo son inmortales, mientras que el organismo en si es mortal. De este hecho se derivaba la hipótesis de que el envejecimiento era un fenómeno del organismo multicelular completo y no un fenómeno individual celular.

George Gey
George Gey

Sin embargo, posteriormente se pudo demostrar que los cultivos de Alexis Carrel no eran “reproducibles” y que para el resto de líneas celulares conocidas por aquellas fechas, las células habían perdido esta barrera o límite proliferativo y por ello, se dividían indefinidamente. Las células HeLa, que mencionábamos antes, fueron establecidas por George Gey a partir de una biopsia del cuello uterino de una paciente (sin su consentimiento, por cierto) llamada Henrietta Lacks (de ahí el nombre de la línea, Henrietta Lacks) y que posteriormente falleció de cáncer de cuello de útero. Gey observó que estas células se establecían y propagaban en cultivo sensacionalmente, lo cual permitía tener un sistema celular con el que desarrollar todo tipo de experimentos en el laboratorio. Las células HeLa tuvieron tanto éxito que hoy en día podemos afirmar sin temor a exagerar que todo laboratorio que trabaje con células humanas ha usado en algún momento, si no usa rutinariamente, esta línea celular. De hecho, se ha podido observar que una de las mayores contaminaciones en las líneas celulares que se distribuyen de laboratorio a laboratorio en el mundo, proviene de células HeLa creciendo como “invasoras” en tus cultivos celulares. Alguien calculó una vez que la expansión de células HeLa a lo largo de los años ha llegado a generar un volumen tal de células que equivaldría a 100 veces el Empire State Building de Nueva York (personalmente me parece un cálculo «arriesgado»).

Henrietta Lacks (1920-1951)
Henrietta Lacks (1920-1951)

Por el contrario, las líneas de fibroblastos aisladas por Hayflick procedían de fetos sanos y, por tanto, sus células son consideradas normales, diploides (mantienen su juego de cromosomas materno y paterno intacto sin duplicaciones ni pérdidas) y primarias, es decir, no han sufrido ningún tipo de alteración genética. Las células, así, son siempre “mortales” en contraposición a las células tumorales, que son aneuploides o poliploides (con pérdidas o ganancias cromosómicas o con múltiples juegos de cromosomas) y transformadas. Las células tumorales son esencialmente “inmortales«.

La fascinante historia de las células HeLa se puede conocer en mayor detalle leyendo el sensacional libro de Rebecca Skloot «The immortal life of Henrietta Lacks« que fue publicado (en inglés) recientemente y es todo un éxito de ventas.