Ranas, ovejas y células en el camino al Nobel


Cuando la semana pasada el comité Nobel anunció el galardón de este año en la categoría de Medicina o Fisiología, comenzaron las carreras por informarse de la contribución científica de los investigadores premiados y por difundir sus hallazgos. Para otros, comenzó también la típica disquisición inevitable que se sucede cada año acerca de los nombres olvidados por la academia sueca. Muchos echaron en falta este año a un popular científico, el inglés Sir Ian Wilmut, “padre” de la oveja Dolly, la oveja más famosa del mundo.

Gurdon (de joven) con sus ranas

Recordemos que el Nobel de este año lo comparten John B Gurdon y Shinya Yamanaka por “su descubrimiento de que las células maduras pueden ser reprogramadas para convertirse en pluripotentes” en palabras de los académicos. Esta idea de que las células maduras pueden ser reprogramadas hasta convertirse en pluripotentes es uno de los descubrimientos científicos más prometedores de las últimas décadas en medicina. Conceptualmente parte de los originales experimentos de John Gurdon allá por la década de los 60 del siglo pasado. En aquel momento no se tenía claro cómo partiendo de un única célula, el óvulo fecundado, se conseguía llegar a obtener toda la diversidad que muestra un organismo adulto, compuesto por más de 200 tipos celulares distintos, cada uno capaz de realizar una tarea específica muy especializada; pero únicamente esa tarea. Gurdon transplantó el núcleo de una célula de intestino de rana a un huevo no fecundado (y al cual se le había desprovisto previamente de su propio núcleo). El resultado fue un huevo que se desarrolló en renacuajo. Esto quería decir que todas las células adultas poseen en su núcleo la información genética completa para ser cualquier cosa, pero que durante el desarrollo, cada célula se especializa en una labor particular. Sin embargo, este proceso es reversible y si ponemos ese núcleo de célula adulta especializada en el contexto adecuado (el de una célula indiferenciada) las instrucciones que llevaron a esa célula a convertirse en una máquina final con una función precisa se borran y la célula recupera todo su potencial original.

Durante años, este descubrimiento no tuvo continuidad con ejemplos en otras especies animales. Hasta 3 décadas después, cuando la revista Nature publicó la descripción de la creación de la oveja Dolly, el primer mamífero clonado. Este anuncio revolucionó sin duda este área científica. Conceptualmente no había nada nuevo, pero el hecho de que aquello que Gurdon había conseguido con ranas se pudiese también realizar con mamíferos era un empujón muy importante a las investigaciones que buscaban poder obtener células embrionarias humanas que pudiesen ser usadas en terapia celular. La oveja Dolly era la prueba de que la reprogramación de las células adultas hasta un estado primitivo de pluripotencialidad era también posible en mamíferos y, por qué no, también en humanos.

Campbell (a la izquierda) y Wilmut (a la derecha), cuando formaban parte del mismo rebaño

Pero la historia de la creación de la oveja Dolly está además rodeada de polémica y conductas cuestionadas por muchos. El artículo científico publicado en la revista Nature en 1997 que dio a conocer el nacimiento de Dolly se acreditó a nombre de Ian Wilmut del Roslin Institute como principal contribuyente, como coordinador del equipo de investigación y director del proyecto que había culminado con semejante espectacular resultado. Wilmut fue aclamado, su nombre y su foto acompañado de la oveja recorrieron todos los periódicos y televisiones del mundo, y hasta recibió el título de “Sir” de manos de la Reina de Inglaterra. Pero al poco tiempo de la publicación, Keith Campbell, colaborador de Wilmut, denunció que en realidad él había sido el que había contribuido de manera principal en la obtención de Dolly y que fueron sus ideas las que permitieron tener éxito en el propósito de clonar una oveja. La cosa no quedó ahí, Wilmut se vio implicado en un asunto judicial debido a las denuncias que un antiguo empleado del Roslin Institute de origen hindú puso contra él, porque había sido despedido, según su versión, injustamente y tras ser acosado e insultado de manera racista por Wilmut. Durante el juicio, la pregunta de si se consideraba autor de la clonación de Dolly surgió y Wilmut contestó que no. Cuando se le interrogó por el papel de Campbell en el proceso de obtención de Dolly, Wilmut adjudicó a su colaborador una contribución del 66% (curiosa forma de tasar la contribución científica). Admitió que la autoría principal de ese artículo había recaído en él por un acuerdo previo a la publicación entre Campbell y él. Estas declaraciones causaron mucho revuelo y apoyándose en ellas y junto con otras acusaciones, algunos antiguos compañeros del Roslin Institute pidieron incluso que se le retirase el título de “Sir.

Puestas así las cosas, no es de extrañar que muchos rehúsen mencionar el nombre de Wilmut, incluso cuando hacen referencia a la creación de Dolly como hito en la carrera que llevó a galardonar a Gurdon y Yamanaka, como hizo recientemente la revista Nature al reseñar el premio. Tampoco es de extrañar que el comité Nobel, como ya hicieron otros comités, jurados y sociedades al considerar los nombres de aquellos científicos dignos de galardón por su contribución al desarrollo de este área, pasaran de puntillas por el nombre de Ian Wilmut. Y por encima del de Campbell quien, casualidades de la vida, falleció cuatro días antes del anuncio del premio Nobel de este año.

Pero olvidemos quién estuvo en realidad detrás de la creación de la oveja (quizás no debería haber usado esa expresión, ejem). Todo este turbio asunto deja también traslucir las luchas por el reconocimiento, las disputas profesionales y las rencillas entre colaboradores que muchas veces discurren entre las poyatas de los laboratorios, especialmente cuando está en juego algo tan deslumbrante como la rutilante gloria de un premio Nobel. Hasta qué punto es justo emborronar un nombre con una reclamación posterior a un acuerdo, en qué grado se es autor principal cuando se ha dirigido un proyecto y asegurado financiación para el mismo, etc, son preguntas siempre delicadas y nada fáciles de resolver y que pueden derivar en que el reconocimiento a una contribución científica quede en el olvido.

Pero continuemos con la carrera puramente científica por conseguir rebobinar el estado de diferenciación celular que inició Gurdon con la inserción del núcleo de una célula adulta en un huevo de rana. Una pega es que el proceso de reversión de la especialización de la célula mediante el transplante de núcleo no es nada práctico, puesto que es un proceso muy costoso, complicado técnicamente y muy poco eficiente, que implica la generación de montones de embriones fallidos, algo no aceptable en la escala ética de muchas personas. Por tanto parece evidente que no es la vía a seguir. La única posibilidad técnica de realizar un proceso semejante de desdiferenciación es muy poco práctica y consiste en inducir la fusión de la célula adulta con una célula embrionaria. De ese modo, los factores presentes en la célula embrionaria son capaces de reprogramar el núcleo de la célula adulta.

Yamanaka (de joven) durante su postdoc en el Gladstone Institute de California

En ese contexto es en donde surge la idea de Yamanaka. Su visión fue que si existían factores en las células embrionarias capaces de devolver al estado de pluripotencia el genoma de una célula adulta, uno podría tratar de identificar exactamente qué factores son necesarios y con ellos inducir todo el proceso a voluntad. Yamanaka cogió papel y boli y fue apuntando una lista de genes conocidos como cruciales para la pluripotencialidad. La lista con 24 nombres de genes se la pasó a su estudiante de doctorado, Kazutoshi Takahashi, con el encargo de que introdujese cada uno de esos genes en fibroblastos de ratón, células diferenciadas como las de la piel. Ese primer intento fue un fracaso ya que cada uno de los genes por separado no fue capaz de revertir la especialización de las células adultas. Yamanaka encargó entonces a Takahashi que introdujese los 24 genes candidatos juntos de una sola vez en los fibroblastos. Esta vez, para su satisfacción, consiguieron obtener células con características de célula pluripotente, a las que denominaron células madre de pluripotencia inducida (iPS en inglés). A partir de ese instante fue una cuestión de eliminar genes uno a uno del grupo de 24 para dar con aquellos necesarios para el proceso, hasta dar con el cóctel mínimo capaz de hacer el truco de devolver al estado de pluripotencialidad embrionario las células adultas, los genes Sox2, Oct4, Klf4 y c-Myc (más tarde demostrado como prescindible). Más adelante la técnica se refinó y se hizo extensible a muy diversos tipos de células adultas y de varias especies.

La generación de células iPS humanas dio un impulso sin precedentes a la investigación en terapia celular. Reprogramar células adultas al estado de embrionarias hace innecesaria su obtención a partir de embriones, salvando dilemas éticos, y aporta una fuente de células propias derivadas del mismo organismo al que se pretenden transplantar, obviando los problemas de rechazo inmunológico, los mismos que se dan en el transplante de órganos. Tenemos por tanto ahora la posibilidad de extraer células de un paciente, modificarlas en el laboratorio para revertir su especialización hasta devolverlas al estado embrionario, y podemos reparar el defecto genético que puedan presentar (si se trata de una enfermedad genética) o simplemente diferenciarlas al tipo celular de interés, el que demande un paciente concreto. Así, una persona tendrá a su disposición un material procedente de su propio cuerpo capaz de formar cualquier tejido que demande en un momento dado.

Todo un sueño para el que aún queda un largo camino, cuyas puertas fueron abiertas con el esfuerzo de muchos investigadores, pero entre los cuales John Gurdon y Shinya Yamanaka brillaron con especial intensidad, como así lo ha reconocido la academia sueca premiándoles con el Nobel de Medicina o Fisiología del 2012.

John B Gurdon (izquierda) y Shinya Yamanaka (derecha), galardonados con el Premio Nobel de Medicina o Fisiología 2012

Nota 1: Este artículo fue publicado en una primera versión en la web naukas.com

Nota 2: Un sensacional artículo de Manuel Serrano, investigador del CNIO, y el posterior intercambio de emails con su autor inspiró esta entrada

Publicaciones clave de John B Gurdon:

Gurdon, J.B., Elsdale, T.R., and Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64-65.

Gurdon, J.B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morph. 10, 622-640.

Gurdon, J.B., and Uehlinger, V. (1966). «Fertile» intestine nuclei. Nature 210, 1240-1241.

Gurdon, J.B., Laskey, R.A., and Reeves, O.R. (1975). The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J. Embryol. Exp. Morph. 34, 93-112.

Gurdon, J.B., and Byrne, J.A. (2003) The first half-century of nuclear transplantation. Proc. Natl. Acad. Sci. USA 100, 8048-8052.

Gurdon, J.B. (2006) From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Ann. Rev. Cell Dev. Biol. 22, 1-22.

Publicaciones clave de Shinya Yamanaka:

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.

Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.

Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26,101-106.

Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702.

Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-953.

El trabajo y la trayectoria de Yamanaka explicados por él mismo en este artículo y los de Gurdon en este otro, publicados en Nature Medicine con motivo del premio Lasker que ambos recibieron en el 2009.

La guerra de las células madre



Células pluripotentes inducidas de ratón

Recientemente, la revista The New Scientist, publicaba un curioso estudio dentro de su especial “The stem cell war” (la guerra de las células madre). El objetivo del mismo era identificar cuáles son los científicos más influyentes en el ardoroso y competitivo campo de investigación de las células madre y, más concretamente, el de la células pluripotentes inducidas (o iPSC de “induced-pluripotent stem cells”). Para más información sobre qué son las iPSC te recomendamos la lectura de alguna entrada anterior de este mismo blog.

Para analizar cuáles son los científicos más destacados en el campo de investigación de las iPSC, Peter Aldhous de la revista The New Scientist, recopiló a partir de la base de datos Web of Science todos los artículos científicos de investigación primaria (es decir, excluyendo editoriales o artículos de revisión) aparecidos hasta el momento sobre el tema. Esto aún es posible hoy en día sin volverse loco porque el tamaño de la literatura científica entorno a las iPSC es, pese a su enorme expansión, aún abarcable. No en vano estamos hablando de un campo que se inició con un artículo del laboratorio de Shinya Yamanaka de la Universidad de Kyoto en Japón, publicado en la revista Cell en el año 2006.

Shinya Yamanaka de la Universidad de Kioto en Japón

Pero el estudio mencionado va más allá y recoge una crítica habitual en el mundo científico relativa al proceso de evaluación por pares, o “peer-review”, y su integridad y honestidad. La comunicación de los resultados de la investigación científica gira alrededor de la publicación de artículos en revistas especializadas. De manera breve: un laboratorio redacta sus nuevos hallazgos en un artículo que envía para su consideración a la revista más adecuada en función del área de especialización y grado de novedad y avance que representa su trabajo. La revista por su parte, tras una decisión editorial inicial basada en el interés y grado de adecuación de lo allí descrito, enviará el manuscrito a 2, 3, 4 revisores externos, de entre los científicos del mismo campo con criterio reconocido por la comunidad científica internacional para examen objetivo de su valía. Estos se encargan de diseccionar lo allí descrito para juzgar la calidad de la experimentación realizada y la validez de las conclusiones, frecuentemente resaltando posibles defectos y en ocasiones ofreciendo valiosos consejos para mejorar los artículos. Pero desgraciadamente no siempre es así y muchos de los que se dedican a publicar su trabajo en revistas científicas se habrán visto envueltos en más de una desgraciada experiencia de retraso y entorpecimiento de la comunicación de su trabajo.

El año pasado, 14 científicos del área de investigación de las iPSC firmaron una carta abierta a los editores de las revistas científicas más prestigiosas quejándose de que la publicación de valiosos resultados, verdaderamente originales, en este campo estaba viéndose entorpecida durante este proceso de “peer-review” con peticiones y exigencias poco razonables que conducían al retraso de la publicación, cuando no a su rechazo.

Imagen insólita para las nuevas generaciones: Revistas en papel y consultadas en bibliotecas.

Este hecho es de importancia y frecuentemente se apunta al favoritismo de las revistas científicas por las publicaciones originadas en los Estados Unidos, en donde basan sus laboratorios los grupos más potentes. ¿Es posible identificar alguna tendencia en ese sentido en este competitivo campo de las iPSC? A fin de cuentas estamos hablando de una carrera más que probable hacia el Premio Nobel y de una experimentación con gran potencialidad de convertirse en la madre de todas las terapias futuras.

Con las citas bibliográficas encontradas (216), Aldhous hizo una lista de las publicaciones relativas a las iPSC publicadas por las mejores revistas (148) y a continuación se dispuso a analizarla. Identificó el nombre y procedencia del investigador primario de cada artículo, así como el de las publicaciones referenciadas en cada uno de esos estudios. Además, para el total de artículos examinados se anotaron cuidadosamente las fechas de recepción del artículo en la revista, la fecha en la fueron aceptados para su publicación y la de aparición online. Los datos crudos pueden ser consultados en esta hoja datos de Google Docs.

Células madre por el siempre genial Forges

Una de las primeras cosas que llama la atención de este estudio es el análisis que revela que los artículos realizados por científicos asentados en los Estados Unidos, efectivamente fueron aceptados y publicados significativamente más rápido que los procedentes de otros lugares del mundo.

A continuación, utilizando una extensión de Microsoft Excel para análisis de redes sociales denominada NodeXL, se mapearon las intrincadas redes de citación de unos científicos a otros. El número de veces que un trabajo propio es citado por otros investigadores en sus artículos es un índice de la relevancia y del grado de aceptación de tus aportaciones a un campo por el resto de la comunidad científica.

Gráfico representando las conexiones entre los científicos autores de las publicaciones de mayor impacto en el área de las iPSC

De los 43 científicos presentes en esta red, 24 de ellos basados en los Estados Unidos y 19 del “resto del mundo”, prácticamente la totalidad (a excepción de uno de los Estados Unidos y otro de fuera) aparecen conectados al pionero del campo, Shinya Yamanaka. Curiosamente, el resto de científicos de fuera de los Estados Unidos no aparecen conectados entre sí, pero sí en siete casos con científicos de Estados Unidos. Por su parte, los científicos de Estados Unidos forman una red de conexiones mucho más rica, aunque no conectan con los científicos de fuera del país, excepción hecha del mencionado Yamanaka.

James Thomson y Doug Melton

Por supuesto, a mayor número de artículos publicados, mayor es el número de conexiones entrantes en la red porque se obtienen más posibilidades de ser citado. A este respecto, los científicos de Estados Unidos representados en el gráfico publicaron 67 artículos en revistas de primer orden, frente a 38 de los de “resto del mundo”. Pero el número de artículos no lo es todo, puesto que existen dos científicos, Doug Melton (del Harvard Stem Cell Institute) y James Thomson (de la Universidad de Wisconsin-Madison), que son referenciados y que poseen menos artículos publicados que muchos de sus colegas sin referencias.

Juan Carlos Izpisúa y María Blasco

Por cierto, entre este panel selecto de destacados científicos figuran dos españoles, curiosamente uno en la lista de los basados en Estados Unidos y otro entre los científicos fuera del país norteamericano. El primero es Juan Carlos Izpisúa Belmonte, investigador del Salk Institute de La Jolla en San Diego, California; aunque también director del Centro de Medicina Regenerativa de Barcelona (CMRB) en España. La segunda es María Antonia Blasco, investigadora responsable del laboratorio de Telómeros y Telomerasa, directora del programa de Oncología Molecular, y vicedirectora del Centro Nacional de Investigaciones Oncológicas (CNIO) de Madrid.

Escalando la pendiente de la pluripotencialidad


Una máxima presente a lo largo de la historia de la biomedicina es que una célula embrionaria posee un potencial absoluto de diferenciación y que una vez iniciado el camino cuesta abajo en la diferenciación o especialización celular, no hay marcha atrás. Tras la fecundación del óvulo, el cigoto sufre una serie de rápidas divisiones celulares que le conducen al estadio de mórula y éste, a su vez, sufre el primer proceso de diferenciación que dará lugar al blastocisto. Este primer evento de diferenciación deja una capa de células externa que es denominado trofoblasto (y que formará la parte embrionaria de la placenta) y una masa de células internas que posteriormente dará lugar al embrión y que se denomina embrioblasto. Las células obtenidas de esta masa celular interna y puestas en cultivo son las famosas (y atacadas por los fundamentalistas religiosos) células madre embrionarias.

de la fecundación al blastocisto

A mediados del siglo pasado, Conrad Waddington (1905-1975), genetista y biólogo del desarrollo escocés, ideó su metáfora del paisaje epigenético para ilustrar el proceso de desarrollo embrionario y cómo una célula, con toda la potencialidad para generar los

Conrad Waddington

tipos celulares presentes en un organismo, desciende por caminos que la van llevando a través de valles que condicionan su destino final, al igual que una canica puesta en lo alto de una colina descendería por distintos caminos hasta establecerse en el punto más bajo de un valle. La metáfora implica que una célula madre está en lo más alto de la cima de la pluripotencialidad y que la caída por la pendiente conlleva pérdida de potencialidad. Cada camino que se toma durante el descenso supone un compromiso hacia un destino final que no puede verse alterado, puesto que supondría saltar colinas en busca de otros valles, ni puede ser revertido, puesto que implicaría ascender la pendiente.

Sin embargo, en 1962 John Gurdon (1933), entonces en la Universidad de Oxford, demostró que el proceso de diferenciación sí es reversible cuando consiguió clonar por primera vez una rana usando la técnica de transferencia nuclear. El núcleo de células somáticas de rana (Xenopus) podía ser transferido a un oocito al que previamente se le

Transferencia nuclear

había retirado su núcleo y con ello, el material genético de la célula somática sufría los cambios necesarios que le permitían trepar por la pendiente hasta la cima de la pluripotencialidad.

Los descubrimientos iniciados por Gurdon culminaron en 1997 con la clonación del primer mamífero, la archifamosa oveja Dolly, a manos de Ian Wilmut del Instituto Roslin de Edimburgo, Escocia, producto de la transferencia nuclear al igual que su antecesora la rana.

Ya en los años 80 del siglo pasado, utilizando viejas técnicas de fusión celular, Helen Blau describió que la pluripotencialidad de una célula embrionaria es dominante frente a la célula somática comprometida y especializada en una función. Puestas en cultivo células diferenciadas y células embrionarias mezcladas en iguales proporciones y añadiendo un

Heterocarion

polímero, el polietilenglicol (PEG), se induce la fusión de sus membranas y la tortilla resultante (heterocarion) es una masa celular que contiene varios núcleos y que presenta características de célula embrionaria. Este tipo de experimentos demuestra que en la célula embrionaria existen factores que permiten a la célula “ganar” pluripotencialidad y que por tanto ese estado es mantenido activamente por las células madre mediante factores que podrían ser transferidos a células somáticas y con ello revertir su diferenciación.

Esta idea fue puesta en práctica en el 2006 por Shinya Yamanaka, cuando hizo su lista de genes candidatos a ser cruciales en el mantenimiento de la pluripotencilidad (24 genes incluyó). Se los “echó” todos a células de ratón diferenciadas y observó que, sorprendentemente, la cosa funcionaba. Depuró con precisión el número mínimo y la identidad de los factores necesarios, quedándose en los conocidos como “factores Yamanaka”, a saber: Oct4, Sox2, Klf4 y c-Myc. De estos cuatro factores originales, c-Myc, conocido oncogén, se ha ido cayendo de la mayoría de combinaciones usadas en los laboratorios por su evidente peligrosidad. La técnica se ha reproducido en multitud de laboratorios de todo el mundo, empleando muy distintos tipos celulares de partida, procedentes de los más diversos organismos, y realizando variaciones sobre el protocolo original para desarrollar sistemas más seguros de introducción de los factores, o para directamente substituirlos por agentes químicos que realicen la función de estos genes de una manera transitoria y más controlada. Al proceso se le conoce como reprogramación a células pluripotentes inducidas (o células iPS).

Proceso de reprogramación a partir de células somáticas

La prueba del algodón de que las células así generadas en cultivo, partiendo de células somáticas (una célula de la piel, un linfocito B, una célula del hígado, etc) a las que se les añadió estos factores, son capaces de generar un ratón entero contribuyendo a formar todos los tejidos sin problema alguno en el desarrollo.

Evidentemente, esta no es la aplicación que se busca cuando se generan células iPS. La aplicación a la que todos los laboratorios aspiran es a dirigir ahora la diferenciación de estas células al tipo celular necesario para un eventual transplante o terapia. Otra posibilidad teórica es la de obtener células dañadas por algún tipo de defecto genético de un paciente, corregir el defecto, reprogramarlas a células iPS y volver a diferenciarlas para ser reintroducidas en los pacientes una vez subsanado el problema. Esta misma aproximación plantea otra aplicación, la de poder utilizar células derivadas de un paciente para ensayar nuevas terapias de enfermedades para las que no se dispone de un buen sistema celular con el que ensayar en la placa de cultivo una buena batería de compuestos.

En este vídeo producido por el laboratorio de Shinya Yamanaka, por ejemplo, se pueden observar cardiomiocitos generados a partir de células iPS que laten en cultivo:

http://fuentedelaeternajuventud.blogspot.com/2010/06/miocitos-latiendo.html

Por supuesto aún nos queda mucho por entender sobre cómo dirigir la diferenciación de manera controlada y eficiente. Incluso sabiendo cómo hacer un cardiomiocito funcional, conseguir transplantarlo en el sitio adecuado y que éste entre a formar parte del corazón receptor y se ponga a funcionar como es debido no es trivial. Pero estos son los primeros, esperanzadores, pasos.

Artículos originales:

Gurdon, J. B. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4, 256–273 (1962). 
En este estudio, John Gurdon usó la transferencia nuclear de células intestinales de anfibios para demostrar que retienen toda la información genética necesaria que, apropiadamente reprogramada, pueden conducir a generar toda una rana.

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997). 
La descripción del primer mamífero clonado, la oveja Dolly, por transferencia nuclear.

Blau, H. M., Chiu, C. P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983). 
Este artículo muestra la plasticidad de las células diferenciadas de mamífero cuyo estado puede ser revertido mediante la fusión a células embrionarias, formando un heterokarion.

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). 
La introducción de cuatro factores de transcripción en células somáticas es suficiente para convertir estas células en pluripotentes.