Bad Science por Ben Goldacre


Ben Goldacre es un médico que ejerce en el servicio público de sanidad británico y periodista especializado en ciencia. Hace años comenzó su aventura en el mundo de la divulgación científica, especializándose en desenmascarar a los charlatanes vendedores de píldoras mágicas y tratamientos alternativos, criticar a lo medios de comunicación por su pésima formación científica y su afán sensacionalista, revelar las irracionales medidas adoptadas por políticos y autoridades, y ayudarnos a entender los errores típicos subyacentes detrás de muchos de nuestros malentendidos de la ciencia, incluidos los de los propios científicos.

Esta labor la realiza Goldacre desde su tribuna privilegiada como columnista semanal en el prestigioso diario británico The Guardian, así como através de su blog, BadScience.net, en el que se recogen sus artículos, además de un foro de discusión abierto al público.

En Septiembre del 2008, Goldacre publicó este libro que es fiel reflejo de su estilo irónico e incisivo. Nutricionistas, homeópatas, antivacunación, negacionistas del VIH, farmacéuticas, etc, todos son blanco de su análisis y crítica satírica, desenmascarando sus errores, cuando no sus engaños.

El libro fue aclamado por la crítica, habiendo recibido comentarios elogiosos en muy diversos medios de comunicación, así como por el público, que lo aupó a los puestos más altos de ventas en Amazon.

Ben Goldacre

Uno de los capítulos más controvertidos de su libro hace referencia al magnate de las vitaminas Matthias Rath, al cual Goldacre había dedicado una serie de artículos desenmascarando sus prácticas promotoras del consumo de píldoras de vitaminas para pacientes de SIDA en Suráfrica, y en contra del uso de antirretrovirales. Con el apoyo del gobierno sudafricano, Matthias Rath (entre otros) ayudó a extender la epidemia de SIDA y negó la imprescindible ayuda terapéutica que podría haber evitado miles de muertes innecesarias. Matthias Rath decidió demandar judicialmente a Goldacre, que se vio envuelto en un costosísimo proceso penal que no podría haberse sufragado si no hubiese contado con el apoyo (no sólo emocional, si no decisivamente monetario) de The Guardian, y a retirar el capítulo dedicado al asunto en la edición inicial del libro. Finalmente los cargos contra él fueron retirados y The Guardian sigue intentando recibir compensación económica por el desembolso que el proceso supuso.

Afortunadamente para todos nosotros, Goldacre incluyó en ediciones posteriores de su libro este capítulo, pero además lo hizo accesible de manera gratuita através de la red (http://badscience.net/files/The-Doctor-Will-Sue-You-Now.pdf).

Para los que tengan problemas con el inglés, se espera una edición en castellano para este mismo año editado por Paidos.

Bad Science por Ben Goldacre (Fourth Estate) ISBN: 9780007240197

Anuncios

Los telómeros y la senescencia celular


En una entrada anterior, veíamos cómo se llegó al descubrimiento de la estructura molecular de los telómeros, fundamentalmente por Liz Blackburn cuando trabajaba en el laboratorio de John Gall.

Carol Greider

Ya en 1984, en el laboratorio que dirigía Elizabeth Blackburn en la Universidad de California en Berkeley, Carol Greider, entonces estudiante de doctorado recién llegada al laboratorio en Abril de ese año, acometió el excitante proyecto que le encargó Liz Blackburn de identificar y aislar la enzima responsable de añadir esas repeticiones en los extremos de los cromosomas. El día de Navidad de ese mismo año Carol Greider obtuvo los primeros resultados positivos en la identificación y aislamiento de esta actividad. En Diciembre del año siguiente, 1985, aparecía publicado en la revista Cell la descripción de esta enzima, que denominaron transferasa terminal del telómero, y que inmediatamente pasó a ser conocida como telomerasa. Esta enzima es una polimerasa particular, puesto que posee un componente proteico, en donde reside la actividad polimerasa, y un componente de ARN que sirve de molde a la enzima para sintetizar esas repeticiones características del telómero. La telomerasa es la enzima responable de la integridad del telómero de organismos simples como Tetrahymena y la levadura, ya permite su división celular continua sin pérdida de secuencias teloméricas. En las células de la línea germinal, que como vimos anteriormente pueden ser consideradas células inmortales, también existe actividad telomerasa detectable que garantiza la integridad de los telómeros en los cromosomas inmortales que viajarán de generación en generación a lo largo de la evolución. Sin embargo, las células somáticas que se derivan de las germinales carecen de actividad detectable telomerasa lo que supone que sus telómeros deberían estar expuestos a los efectos del problema de la replicación terminal. De hecho así es, y cuando se compara la longitud telomérica de células de la línea germinal y de células somáticas de un mismo individuo, estas últimas presentan telómeros más cortos debido a la incapacidad para reponer las secuencias que se van perdiendo de división en división celular.

Calvin Harley

En 1990, una vez que Carol Greider había conseguido una posición independiente en los laboratorios de Cold Spring Harbor en Nueva York, comenzó a colaborar con Calvin Harley de la Universidad McMaster en Ontario, Canada. Harley tenía un gran interés en definir cómo se producía el control del número de divisiones celulares y en identificar el reloj biológico que marca a la célula el momento de cesar en su capacidad de proliferación. La unión del conocimiento de Calvin Harley y la experiencia en el campo de los telómeros de Carol Greider fructificó en la descripción del acortamiento telomérico debido a las sucesivas rondas de división celular, conectando así la senescencia celular descrita por Hayflick con los telómeros como mecanismo molecular capaz de detectar el número de divisiones celulares. Más aún, cuando se examinaron los telómeros de células de la piel de donantes jóvenes y viejos, se observó una perfecta correlación entre la longitud de los mismos y la edad del individuo de procedencia, estableciendo el acortamiento telomérico como un fenómeno natural asociado al envejecimiento más allá de la observación hecha en células en cultivo. Tras esta productiva colaboración con Carol Greider, Calvin Harley decidió dejar el mundo académico de la ciencia y pasarse al lado comercial y por ello, en 1993, entró a formar parte de la recién creada compañía de biotecnología Geron de Menlo Park en California (de donde se ha retirado como CEO en Septiembre del año 2009), cuyo principal interés está centrado en desarrollar estrategias de prolongación de la vida fundamentalmente basadas en manipular la actividad telomerasa y mantener nuestros telómeros largos. Este acercamiento al mundo de la ciencia empresarial de Harley terminó por distanciar a ambos, debido a la incomodidad que sentía Carol Greider estando en el foco de la atención pública, foco atraído la mayoría de las veces por pronunciamientos un tanto exagerados de su compañero para reforzar la posición en el mercado de su compañía.

Recurriendo de nuevo al símil de los cordones de los zapatos, las sucesivas divisiones celulares, debido al problema de la replicación terminal de Olovnikov ya enunciado antes, van erosionando los telómeros durante el envejecimiento del mismo modo que el uso va desgastando la protección de plástico que rodea el final de cada cordón. Llegado un punto en el que se pierde esa capacidad protectora, los cordones quedan expuestos y se deshilachan.

¿Qué son los telómeros?


Los estudios pioneros de Hermann Müller (premio Nobel en 1945) trabajando con la mosca del vinagre, Drosophila melanogaster, y de Barbara McClintock (también premio Nobel en 1983) estudiando el maíz, Zea mays, habían concluído que los extremos de los cromosomas poseen unas estructuras especiales denominadas telómeros (del griego telos: final y meros: parte). Estas estructuras representarían una protección fundamental para que los cromosomas no resulten fusionados por la maquinaria de reparación de la célula ya que permiten distinguir estos extremos de cualquier otra rotura en el ADN celular que debe ser reparada y vuelta a fusionar. En muchas ocasiones se ha empleado el símil de los extremos de los cordones de los zapatos para referirse a la función de los telómeros que estarían, al igual que las fundas plásticas que se usan para proteger el extremo de los cordones, protegiendo la integridad de los cromosomas.

Telómeros (en amarillo) en los extremos de los cromosomas (en azul). Cortesía: Martina Stagno

Para poder entender el papel de los telómeros y de la enzima telomerasa en el envejecimiento hay que repasar las nociones básicas de replicación del ADN, el material genético que contiene toda la información necesaria para la vida. En 1953, James Watson y Francis Crick, que junto a Maurice Wilkins recibieron el premio Nobel en el año 1962, habían descrito la estructura de doble hélice del ADN en una publicación histórica (y sorprendentemente corta de 1 página que se puede leer aquí) en la revista Nature. El modelo de estructura del ADN establece que dos cadenas de nucleótidos se enfrentan de manera complementaria (timina con adenina y guanina con citosina) y se retuercen a modo de hélice que gira hacia la derecha. Por tanto, tenemos dos hebras que discurren en paralelo y que son copia complementaria la una de la otra. Cuando una célula se dispone a dividirse en dos células hijas inicia el proceso de replicación del ADN con el objetivo de fabricar una copia fiel de cada una de las hebras. De esta delicada función celular se encarga la enzima ADN polimerasa. Debido a la extraordinaria longitud del ADN y a que el proceso de replicación debe realizarse en un tiempo razonable, el trabajo es realizado por varias moléculas de ADN polimerasa al mismo tiempo, cada una de ellas encargada de una región de la hebra.

Replicación del ADN. La síntesis de la cadena retrasada se realiza en fragmentos a partir de "cebadores" que posteriormente se eliminan.

El primer paso de la replicación es la separación de las dos hebras de manera que su interior sea accesible a la polimerasa. La actividad de la enzima le permite leer el nucleótido a copiar a partir de la cadena original que actúa como molde, seleccionarlo e incorporarlo a la cadena hija. Sin embargo, la ADN polimerasa sólo es capaz de funcionar en una dirección (un argumento más en contra de los defensores del diseño “inteligente), por lo que una de las cadenas se sintetiza de manera continua según se va abriendo la doble hélice, mientras que la otra depende de la actividad de la síntesis de una pequeña cadena de ARN que sirva de “cebador” a partir del cual añadir los nuevos nucleótidos. Posteriormente estas cadenas “cebadoras” son eliminadas y sustituidas por nucleótidos de ADN. Este proceso es posible a lo largo de la longitud de toda la hebra de ADN, a excepción de los extremos, puesto que cuando el último cebador sea eliminado, la ADN polimerasa no será capaz de rellenar ese hueco debido a su incapacidad de funcionar en los dos sentidos. De manera que nos encontramos con un proceso de copia del ADN, la molécula esencial para la célula que contiene toda la información, que producirá dos nuevas moléculas formadas por una cadena parental y una hija, que va dejando de copiar un pequeño fragmento en el extremo en cada ronda de replicación. Sin duda no parece un proceso demasiado eficiente, puesto que tras varias divisiones celulares, las células hijas estarán recibiendo moléculas de ADN más cortas de lo original.

James Watson, en el año 1972, mientras se encontraba preparando una clase de bioquímica en la universidad de Harvard, reflexionó sobre este problema al darse cuenta de que un tipo de virus que infecta a bacterias denominado bacteriófago T7, une de manera consecutiva varias moléculas de ADN antes de iniciar su replicación para, de esta manera, minimizar la pérdida de secuencias que supone el problema de replicación de los extremos. Al mismo tiempo, y muy lejos de allí, Alexei Olovnikov en el Instituto Gamelaya de la entonces República Soviética, se encontraba también reflexionando sobre las particularidades del ADN y el proceso de replicación mientras esperaba el tren. Se dio cuenta entonces que si la máquina del tren es la ADN polimerasa que avanza sobre las vías del ADN, el trozo de vía sobre el que descansa la máquina al iniciar su marcha no puede ser replicado.

James Watson (izq) y Alexei Olovniokov (der)

El problema de la replicación final de Watson y el problema de la replicación inicial de Olovnikov confluyen en la idea de que cada división celular conlleva una pérdida de secuencias del ADN que, sin duda, no es aceptable para la integridad de la información genética contenida en el ADN. Olovnikov conocía los trabajos de Len Hayflick describiendo el proceso de senescencia celular y esto le llevó a publicar un artículo teórico en el año 1973 en el que proponía que este acortamiento de las hebras de ADN en cada ronda de replicación y división celular podía ser la base del proceso descrito por Hayflick. De alguna manera, teorizaba Olovnikov, la célula “siente” esa pérdida de ADN como algo incompatible con la supervivencia celular.

Sin embargo, esto no es del todo exacto, puesto que los extremos de los cromosomas en los que se organizan las hebras de ADN se encuentran protegidos para evitar esas pérdidas de secuencias que no podrían ser asumibles. En el año 1978, Elizabeth H. Blackburn, trabajando en el laboratorio de John Gall en Yale, describió que los extremos del único cromosoma lineal del protozoo ciliado Tetrahymena, están formados de secuencias simples repetidas. Además pronto fue evidente que lo mismo ocurría en muchos otros organismos que fueron examinados y la comparación de las secuencias identificadas en todos ellos mostró un alto grado de similitud entre organismos muy diversos, por lo que este fenómeno debía de representar un mecanismo conservado en la evolución para mantener intactos estos extremos. De hecho, un experimento clave para demostrar que estas secuencias están conservadas y son capaces de funcionar incluso en distintas especies fue el realizado por Jack W. Szostak de la Harvard Medical School, usando las secuencias identificadas por Liz Blackburn. Zsostak estaba intentando generar cromosomas artificiales de levadura (YACs) y todos sus intentos fracasaban porque sus YACs eran inestables. Cuando añadió las secuencias repetidas de telómero derivadas de Tetrahymena, sus YACs funcionaron. Además, tras un periodo dentro de la levadura, estos YACs poseían telómeros aún más largos, lo que implicaba que debía existir una actividad enzimática capaz de añadir más secuencias repetidas a los telómeros, alargándolos. Esta actividad enzimática sería más tarde identificada y aislada, y se conoce por el nombre de telomerasa. En su descubrimiento tuvo un papel fundamental Carol W. Greider; pero esta historia formará parte de otra entrada de este blog.

Recientemente, en el año 2009, Elizabeth H. Blackburn, Jack W. Szostak y Carol W. Greider fueron galardonados con el premio Nobel por su descripción molecular de los telómeros y la identificación de la telomerasa, lo que ha permitido el entendimiento de la maquinaria molecular encargada de preservar la integridad de los extremos de los cromosomas y ha dibujado un modelo que nos permite entender el papel que estas estructuras juegan en la resolución del problema de la replicación terminal. Todos estos descubrimientos tienen enorme relevancia en nuestra visión del proceso de envejecimiento a nivel molecular, así como en la biología del cáncer, como veremos en otro momento.

La senescencia celular nos protege frente al cáncer


Pese a que en la descripción original de la senescencia celular Hayflick apuntó a su posible conexión con el fenómeno de envejecimiento celular, reflejo a pequeña escala de lo que ocurre con un organismo entero tras el paso del tiempo, posteriormente otras investigaciones pusieron de manifiesto una explicación alternativa a lo observado. En concreto, en el año 1997, en los laboratorios de Cold Spring Harbor en el estado de Nueva York, Manuel Serrano, entonces investigador postdoctoral en el prestigioso laboratorio de David Beach, y en colaboración con el recientemente creado laboratorio de Scott Lowe, describieron cómo las células normales primarias tanto de humano como de ratón, respondían ante la presencia de un oncogén activado, mediante unos cambios morfológicos y una parada irreversible en su proliferación, que resultaban indistinguibles de lo descrito más de tres décadas atrás por Hayflick como senescencia celular. Por ello denominaron al proceso que acababan de observar como senescencia inducida por oncogenes, puesto que el estímulo que llevaba a las células a entrar en ese letargo característico de la senescencia celular no era la acumulación de sucesivas divisiones celulares, si no la presencia de un oncogén.

Izquierda-derecha: Manuel Serrano, David Beach, Scott Lowe

Inmediatamente, los autores de este artículo postularon la posibilidad de que dicha respuesta supusiera un mecanismo de defensa celular ante la exposición a lo que evidentemente resulta peligroso para la célula. Establecer de manera repentina una parada en la maquinaria de división celular ante la agresión que supone la actividad oncogénica, garantiza la imposibilidad de expansión de células dañadas que, de otra manera, se adueñarían del tejido en el que residiesen, dando lugar a un tumor. Como refuerzo de esta hipótesis, los investigadores describieron cuáles eran las moléculas fundamentales que formaban parte de este mecanismo de defensa celular, que resultaron ser moléculas clave en la defensa frente al cáncer, aquellas codificadas por genes que se conocen bajo el nombre de supresores de tumores.

Pese al inicial entusiasmo con que estas investigaciones fueron recibidas por la comunidad científica, investigaciones posteriores empezaron a poner en duda la relevancia del sistema empleado tanto por Hayflick para describir la senescencia celular, como la de Serrano y colaboradores para documentar la senescencia inducida por oncogenes. Muchos investigadores apuntaban a las condiciones artificiales y no exentas de ambientes “estresantes” para la célula como responsables de lo observado por Hayflick. A fin de cuentas, las células que residen en el organismo distan mucho de estar sometidas a medios de cultivo ricos en factores de crecimiento, están expuestas a concentraciones de oxígeno muy inferiores a las utilizadas en los incubadores presentes en las salas de cultivo celular, y sus “anclajes” no se parecen en nada al plástico de las placas a las que se adhieren y sobre las que crecen las células en el laboratorio. En particular, con respecto a la relevancia de la senescencia inducida por oncogenes, muchos investigadores empezaron a mostrar sus dudas, fundamentalmente porque un proceso observado únicamente en semejantes condiciones tan artificiales difícilmente resulta creíble. Comenzaron además a describirse modelos animales de desarrollo de cáncer utilizando ratones modificados genéticamente de manera que expresaran oncogenes activados, con el objetivo de recrear en el ratón el inicio tumoral provocado por mutación genética de oncogenes. La conclusión para muchos era que bastaba con la expresión de un oncogén activado para que se iniciase un proceso de crecimiento tumoral, sin lugar por tanto para lo observado en cultivo por Serrano y colaboradores.

Puestas así las cosas, para muchos la senescencia celular apareció como un artefacto. Eso sí, como recuerdo oír decir con ironía a Manuel Serrano, sin duda un artefacto muy útil, porque por “casualidad” se produce en respuesta a la presencia de oncogenes, resulta tremendamente útil para proteger a las células del efecto perjudicial de la acción de los oncogenes y dentro de la maquinaria celular es llevado a cabo por genes que “casualmente” se han encontrado prácticamente en la totalidad de los tumores humanos mutados, silenciados, o totalmente ausentes (“delecionados”). De hecho, las investigaciones realizadas durante aquellos años empleando el sistema celular de senescencia celular, así como el modelo de senescencia inducida por oncogenes, aportaron pistas que se revelaron posteriormente como muy útiles en la investigación frente al cáncer.

Tinción de senescencia (azul) en tumor benigno de pulmón

No obstante, en el año 2005, empleando muy diversas aproximaciones experimentales y en modelos tanto de ratón como en muestras humanas, cuatro grupos distintos (entre ellos el de Manuel Serrano) publicaron simultáneamente la existencia de la senescencia inducida por oncogenes en tejidos en vivo sometidos al estrés inducido por la presencia de diversos oncogenes activados. Más aún, la senescencia inducida por oncogenes se demostró como un mecanismo tremendamente efectivo en la defensa antitumoral, puesto que cuando se anula de manera experimental, por ejemplo manipulando genéticamente el ratón para impedir la expresión de alguno de estos supresores de tumores clave en la respuesta de senescencia, los animales desarrollan cáncer. Estas demostraciones supusieron un espaldarazo para la teoría del papel en la defensa frente al desarrollo del cáncer que supone el proceso de senescencia celular. Desde aquel año 2005 han sido muchos otros laboratorios los encargados de aportar pruebas adicionales de la existencia de este proceso, de su importancia como mecanismo de defensa antitumoral y de refinar nuestro conocimiento sobre la maquinaria que lo ejercita y las circunstancias que rodean el proceso.

El objetivo final, sin duda, sería entender al detalle los mecanismos íntimos del proceso natural, para intervenir sobre él con estrategias terapéuticas que nos permitan desarrollar nuevos y más efectivos medicamentos frente al cáncer.

Senescencia celular y cáncer


Describíamos en una entrada anterior, dedicada a las causas moleculares del envejecimiento, que en los años 60 Len Hayflick describió el proceso de senescencia celular; aquel por el cual todas las células somáticas de un organismo, cuando son puestas en cultivo proliferan de manera normal hasta experimentar una serie de cambios morfológicos que acompañan la parada irreversible en su capacidad de dividirse. Estas observaciones fueron pioneras y marcaron el inicio de un campo de estudio en la capacidad proliferativa limitada de las células. Pero su descripción resultó complicada. Cuando Hayflick redactó sus observaciones y mandó sus resultados a publicar a la revista Journal of Experimental Medicine, la contestación negativa que recibió vino acompañada de un comentario “nada agradable” por parte del editor encargado de examinar su trabajo, Peyton Rous, posteriormente galardonado con el premio Nobel en el año 1966 por sus pioneras observaciones sobre la transmisión de ciertos tipos de cáncer y las infecciones virales. Según Rous, el único motivo por el cual las células que Hayflick había extraído de humanos, puesto en cultivo e intentado expandir, habían cesado en su proliferación era por su incapacidad e ineptitud para cultivar células, puesto que todas las células puestas en cultivo, son esencialmente inmortales.

“El mayor hecho derivado de la investigación en cultivos celulares de los últimos 50 años es que las células, capaces de manera innata de multiplicarse, lo harán indefinidamente si se les suministra el medio adecuado para ello” Peyton Rous

Y ahí está el quid de la cuestión. Desde que Ross Harrison en el año 1907 iniciase la época del cultivo de células animales, los pioneros de esta novedosa tecnología habían tenido que desarrollar medios nutritivos en los que mantener las células y ser especialmente cuidadosos con las contaminaciones (por aquel entonces aún no se conocían los antibióticos).

Ross Granville Harrison
Ross Granville Harrison

Pero los primeros éxitos, como los del cirujano francés afincado en Nueva York y ganador del premio Nobel, Alexis Carrel, que consiguió establecer cultivos de células de embrión de pollo que se mantuvieron vivos durante 34 años (dos años más de los que vivió el mismo Carrel) y en especial el cultivo de la línea de células tumorales HeLa por George Gey en 1952, parecían indicar que las células extraídas de los tejidos eran esencialmente inmortales y podían ser propagadas y mantenidas indefinidamente en cultivo. Estas observaciones llevaron a la aceptación generalizada de la idea de que las células individuales del organismo son inmortales, mientras que el organismo en si es mortal. De este hecho se derivaba la hipótesis de que el envejecimiento era un fenómeno del organismo multicelular completo y no un fenómeno individual celular.

George Gey
George Gey

Sin embargo, posteriormente se pudo demostrar que los cultivos de Alexis Carrel no eran “reproducibles” y que para el resto de líneas celulares conocidas por aquellas fechas, las células habían perdido esta barrera o límite proliferativo y por ello, se dividían indefinidamente. Las células HeLa, que mencionábamos antes, fueron establecidas por George Gey a partir de una biopsia del cuello uterino de una paciente (sin su consentimiento, por cierto) llamada Henrietta Lacks (de ahí el nombre de la línea, Henrietta Lacks) y que posteriormente falleció de cáncer de cuello de útero. Gey observó que estas células se establecían y propagaban en cultivo sensacionalmente, lo cual permitía tener un sistema celular con el que desarrollar todo tipo de experimentos en el laboratorio. Las células HeLa tuvieron tanto éxito que hoy en día podemos afirmar sin temor a exagerar que todo laboratorio que trabaje con células humanas ha usado en algún momento, si no usa rutinariamente, esta línea celular. De hecho, se ha podido observar que una de las mayores contaminaciones en las líneas celulares que se distribuyen de laboratorio a laboratorio en el mundo, proviene de células HeLa creciendo como “invasoras” en tus cultivos celulares. Alguien calculó una vez que la expansión de células HeLa a lo largo de los años ha llegado a generar un volumen tal de células que equivaldría a 100 veces el Empire State Building de Nueva York (personalmente me parece un cálculo “arriesgado”).

Henrietta Lacks (1920-1951)
Henrietta Lacks (1920-1951)

Por el contrario, las líneas de fibroblastos aisladas por Hayflick procedían de fetos sanos y, por tanto, sus células son consideradas normales, diploides (mantienen su juego de cromosomas materno y paterno intacto sin duplicaciones ni pérdidas) y primarias, es decir, no han sufrido ningún tipo de alteración genética. Las células, así, son siempre “mortales” en contraposición a las células tumorales, que son aneuploides o poliploides (con pérdidas o ganancias cromosómicas o con múltiples juegos de cromosomas) y transformadas. Las células tumorales son esencialmente “inmortales“.

La fascinante historia de las células HeLa se puede conocer en mayor detalle leyendo el sensacional libro de Rebecca Skloot The immortal life of Henrietta Lacks que fue publicado (en inglés) recientemente y es todo un éxito de ventas.

Las células de la línea germinal son inmortales


Ya en el siglo XIX, el biólogo celular y evolucionista alemán August Weismann había postulado que los organismos multicelulares morían debido a su incapacidad para mantenerse a partir de divisiones celulares indefinidas. Este hecho lo ponía en relación con el mantenimiento de las células de la línea germinal, que perduran de generación en generación a lo largo de la vida de una especie, y que por tanto son, esencialmente, inmortales.

August Weismann

Las células germinales son las que dan origen al esperma y a los óvulos y son inmortales en el sentido de que, tras la fertilización, son capaces de dar lugar a todo un organismo maduro completo compuesto de células mortales (conocidas como células somáticas en contraste con la denominación de células germinales) y a más células germinales que retendrán la capacidad de volver a generar de nuevo todo un organismo completo. August Weismann a finales del siglo XIX propuso su teoría de que sólo las células que formaban parte de esta línea germinal poseían la capacidad de transmitir la información hereditaria que se pasa de generación en generación y que, por tanto, no existe ninguna característica aprendida o adquirida por las células somáticas de un organismo que pueda ser transmitida a las siguientes generaciones, algo que se conoce como “barrera de Weismann”.

La idea implícita en los trabajos de Weismann de que las células somáticas no poseen una capacidad de división continua que permita mantener a los organismos de manera indefinida, sólo pudo ser examinada y corroborada por Len Hayflick en los años 60 del siglo XX (ver entrada anterior de este blog), y no sin resistencia.

El “envejecimiento” celular – Senescencia celular


Len Hayflick
Len Hayflick

La biología celular, el estudio encargado de las propiedades, funciones y componentes de la célula, adquirió su mayor auge en la primera mitad del siglo pasado cuando se desarrollaron los métodos de obtención de células a partir de tejidos, los medios de cultivo y las técnicas básicas que permiten crecer las células en placas especiales. A principios de los años 60, Leonard “Len” Hayflick, del Instituto Wistar de Filadelfia en los EEUU, se propuso aislar y cultivar un tipo concreto de células humanas, los fibroblastos. Su obtención a partir de distintos tejidos de fetos abortados humanos resultó sencilla y su adaptación al medio y a las placas de cultivo resultaba óptima, pero cuando analizó en detalle la capacidad de crecimiento de estas células tras sucesivos pases seriados, se encontró con que, sin excepción, las células comenzaban a sufrir una serie de cambios en su morfología, se agrandaban y aplanaban, y cesaban en su capacidad de dividirse en dos células hijas. Estos cambios se producían gradualmente en los cultivos según acumulaban divisiones, hasta que tras un número más o menos determinado de divisiones celulares, la monocapa de células estaba en su totalidad compuesta por este tipo de células que habían dejado de proliferar. Las células seguían siendo activas, eran capaces de desarrollar con normalidad aparente su metabolismo individual, pero por más factores de crecimiento que se añadiesen a las placas de cultivo las células se habían vuelto insensibles al estímulo proliferativo.

Teniendo en cuenta que el axioma de su época era que las células en cultivo eran inmortales y podían ser mantenidas dividiéndose felizmente por tiempo indefinido, Hayflick primero puso en duda sus observaciones, que achacó a algún error propio en la manipulación de sus cultivos. Por ello repitió meticulosamente sus análisis durante tres años con las distintas líneas celulares de fibroblastos humanos que preparó, observando siempre el mismo fenómeno, esto es, las células se adaptaban a las condiciones de cultivo y proliferaban felizmente hasta alcanzar un punto en el que, sin remedio, empezaban a acumularse células de distinto aspecto que cesaban en su división y llegaban a representar la totalidad de la placa de cultivo. Para descartar la posibilidad de que sus cultivos estuviesen sufriendo algún tipo de contaminación responsable de la pérdida de capacidad proliferativa, Hayflick ideó un experimento sencillo, pero definitivo. Creció algunos de sus fibroblastos obtenidos a partir de un feto masculino y una vez cercanos a su ya conocido límite proliferativo los mezcló en la misma placa con fibroblastos “frescos” procedentes de un feto femenino. Procedió al cultivo de esta población mixta hasta que el cultivo masculino que había mantenido separado aparte sin mezclar como cultivo control cesó por completo en su capacidad de división celular. Comprobó entonces cuál era el sexo de las células que mayoritariamente seguían proliferando en la placa con mezcla de células y encontró que la población celular era prácticamente en su totalidad femenina. Es decir, las células que se habían acercado a su “vejez” seguían manteniendo una memoria de su edad y dejaban de dividirse, independientemente de estar mezcladas o no con células jóvenes. Su explicación a semejante observación fue que las células, al igual que ocurre con los organismos completos de las que son extraídas, tienen una capacidad de proliferación limitada y una vez alcanzado un límite en el número de divisiones celulares “programado”, se paran y son incapaces de volver a dividirse. A esta capacidad limitada de proliferación en cultivo se la conoce como “límite de Hayflick” en honor del investigador que la identificó. Hayflick además postuló que debía existir una “substancia” imprescindible para la división celular que, con las sucesivas divisiones celulares, al ser repartida entre las células hijas, se diluía hasta alcanzar unos niveles incompatibles con la división celular. Alternativamente proponía que cada ronda de división celular generaba algún tipo de componente que se acumulaba en la células de manera que dado un cierto número de divisiones se alcanzaría un nivel de ese componente que imposibilitaría de nuevo la división celular. De alguna manera, como veremos, ambas teorías son ciertas y suponían la existencia de lo que se dio en llamar “reloj celular”, capaz de contar el número de divisiones celulares que una determinada célula ha experimentado a lo largo de su vida y que dispararía la señal necesaria para poner en marcha un mecanismo de freno en la maquinaria de división celular.

cultivo celular
cultivo celular seriado hasta alcanzar el límite de Hayflick

Los cultivos celulares pueden almacenarse preparando viales con pequeñas cantidades de células concentradas en un medio de congelación especial que se depositan en el interior de tanques de nitrógeno líquido (a unos -180°C). De esta manera se puede recuperar de nuevo un cultivo antiguo y volver a crecerlo. Tras la primera descripción de Hayflick en el año 1961 del proceso de senescencia celular, sus cultivos de fibroblastos fueron congelados anotando cuidadosamente la fecha y el número de divisiones que habían sufrido en cultivo. Tres años más tarde, cuando algunos de estos cultivos fueron descongelados y vueltos a poner en placas, las células fueron capaces de dividirse el número de veces correspondiente hasta alcanzar su límite proliferativo, demostrando de nuevo la validez del concepto de edad celular basado en el número de divisiones. Pero es que recientemente, en el año 2006, algunos de esos mismo viales volvieron a ser descongelados, y las células que habían permanecido 45 años sufriendo el letargo helado del tanque de nitrógeno, proliferaron de nuevo el mismo número de divisiones hasta alcanzar su límite, tal como lo habían hecho más de cuatro décadas atrás. El artículo original de Hayflick y Moorhead del año 1961 en Experimental Cell Research se puede descargar aquí.

Una de las primeras preguntas que surgió tras la descripción del fenómeno de senescencia celular es, ¿cuál es el papel que tiene este límite proliferativo de las células? ¿Tiene alguna relación con el envejecimiento del organismo? Pero surge además otra cuestión que intrigó a los científicos de inmediato, ¿qué es lo que les dice a las células que deben parar de dividirse? Como veremos más adelante, existen diversos mecanismos moleculares que se han propuesto como capaces de contar el número de divisiones y de disparar la maquinaria necesaria para parar el proceso de división celular de manera irreversible.