Reprogramando la progeria


Hace unos meses teníamos ocasión de comentar cómo la investigación básica resultaba determinante en el avance hacia posibilidades terapéuticas reales para enfermedades tan devastadoras como los síndromes de envejecimiento prematuro, las progerias (ver esta entrada anterior del blog). El síndrome de Hutchison-Gilford (o HGPS), la progeria más común, es una enfermedad de base genética producida por mutaciones en el gen LMNA que codifica para la proteína lamin A. Esta lamin A es un componente esencial de la lámina nuclear, que es una estructura fundamental para mantener una correcta arquitectura nuclear. Las mutaciones en el gen LMNA llevan a la producción de una lamin A defectiva que no se procesa correctamente. Esta proteína se sintetiza primero como “pre-lamin A“; posteriormente se farnesila (se le añade un grupo lipídico, farnesilo), lo que le sirve para anclarse a la membrana del núcleo; y finalmente se corta gracias a la acción de una proteasa (una enzima que reconoce una secuencia específica y da un corte). Sólo entonces tenemos lamin A funcional.

 Como decía, las mutaciones en LMNA resultan en un proteína pre-lamin A que se farnesila, se ancla a la membrana, pero no puede ser cortada por la proteasa debido a que la secuencia alterada en los pacientes es justo la que reconoce como diana la proteasa responsable del paso final de procesamiento de la proteína. Esto lleva a que esa proteína defectuosa se quede anclada en la membrana nuclear en lo que se conoce como “progerina” o proteína de la progeria. Esa acumulación es la que resulta tóxica para las células de los pacientes, ya que acaba por causar la desorganización de la estructura de los núcleos y, con ello, altera las funciones fundamentales que realiza este centro de operaciones celular. El resultado final es envejecimiento acelerado y los pacientes fallecen sin superar los 13 años como viejecitos cuando aún son niños. Es una enfermedad devastadora.

Colonia de células madre en cultivo

Comentamos también en este blog anteriormente, el espectacular avance que supone la técnica de reprogramación a célula pluripotente inducida (o célula iPS), descrita por Shinya Yamanaka en el año 2006 (ver la entrada “Escalando la pendiente de la pluripotencialidad”) La reprogramación celular a célula pluripotente inducida permite retrasar el reloj del desarrollo de una célula (ojo, no confundir con el reloj temporal) con sólo añadirle 3 (originalmente 4) factores, los genes embrionarios Sox2, Klf4 y Oct4 (originalmente también el gen c-Myc formaba parte del “cocktail reprogramador”). Es decir, cualquier célula diferenciada, adulta, puede volver hacia atrás en la senda del desarrollo que siguió desde que formaba parte del embrión, hasta convertirse en “algo” muy similar a una célula madre embrionaria (ES) con sólo añadirle estos factores de reprogramación. Desde que se describió esta técnica, el mundo científico anda revolucionado por las evidentes posibilidades que esta tecnología promete hacer realidad. Tener en la mano la posibilidad de devolver al estado embrionario cualquier célula adulta y, desde ahí, encaminarla de nuevo hacia un tipo celular (el mismo de origen u otro distinto) guiándola de la mano en el laboratorio nos permitiría obtener cualquier tejido adulto para reemplazar tejido dañado, haciéndolo además a partir de células del propio paciente, obviando problemas de compatibilidades, rechazos, etc.

Un ejemplo de la teórica utilidad de las células iPS fue aportado por el Dr Juan Carlos Izpisúa, del Salk Institute de la Jolla en San Diego, California, y del Centro de Medicina Regenerativa de Barcelona, cuando publicó en Nature en el 2009 la reprogramación a iPS de células de pacientes de la anemia de Fanconi tras haber corregido el defecto genético que portan esas células para, posteriormente, diferenciar esas iPS corregidas a célula de la sangre, que son las células afectadas en la anemia de Fanconi. Teóricamente entonces, se podría hacer una transfusión de células sanguíneas corregidas procedentes de las dañadas del propio paciente (“teóricamente” aún).

Otra de las posibilidades que ofrece esta tecnología de reprogramación a célula iPS es la de contar con un verdadero banco de pruebas en donde ensayar la actividad de miles de compuestos sobre células en cultivo que son idénticas a las presentes en la enfermedad. Para muchas enfermedades esto sería un lujo que abriría muchas posibilidades terapéuticas.

Por último, contar con la posibilidad de recrear todo el proceso de la enfermedad en una placa de cultivo, desde el estadio embrionario hasta la célula adulta que refleja el problema y causa la patología, ofrece una oportunidad única de estudio de la enfermedad.

Juan Carlos Izpisía (izq) y Alan Colman (der)

Pues bien, se publica ahora en Nature por parte del grupo de Juan Carlos Izpisúa, e independientemente en Cell Stem Cell por el grupo de Alan Colman, del A*STAR Institute of Medical Biology de Singapur, que se han conseguido reprogramar a células iPS, células procedentes de la piel de pacientes de HGPS. Estas células de la piel, fibroblastos, de HGPS no pueden ser crecidas en cultivo mucho tiempo porque en seguida “envejecen“, entran en lo que se conoce como senescencia celular, para muchos un reflejo celular de lo que es el envejecimiento del organismo. Del mismo modo que estos pacientes envejecen prematuramente, sus células en cultivo parecen también estar mucho más predispuestas a dejar de dividirse y “senescer“. Eso dificulta tener material en cultivo sobre el que analizar el efecto de potenciales fármacos.
Cuando estos grupos de investigadores añadieron los genes de reprogramación a esos fibroblastos de HGPS antes de que se parasen, las células volvieron atrás en su desarrollo hasta células iPS, es decir, a células embrionarias. Las células embrionarias NO expresan de manera normal el gen LMNA, el de la lamin A, por lo que las células así generadas son normales, crecen felices en cultivo y se pueden expandir. Al analizarlas, los investigadores comprobaron que no se acumula progerina, ni existen defectos típicos de las células de HGPS.
Cuando esas células iPS de HGPS se diferencian en el laboratorio a células de músculo liso por ejemplo, las células empiezan a expresar de nuevo lamin A mutante, se acumula progerina y las células entran en senescencia celular, envejecen.

Por todo esto, siguiendo el primero de los puntos del potencial terapéutico asociado a las iPS que comentamos antes, los investigadores proponen que ahora sería posible corregir el defecto genético (antes o después de reprogramar a iPS), diferenciar a un tipo celular dañado en el paciente y con las células generadas realizar una especie de autotransplante. Siguiendo el segundo punto del potencial terapéutico de las iPS, ahora se pueden probar librerías de compuestos farmacológicos en las células diferenciadas a partir de iPS de HGPS para tratar de encontrar “algo” que resulte beneficioso para las células, con la esperanza de que se pueda convertir en un tratamiento eficaz contra la enfermedad. Con respecto al tercer punto, es evidente que si se tienen esas iPS de HGPS, ahora se puede recrear en una placa de cultivo todo el proceso de la enfermedad y analizar en mayor detalle todas sus fases. Sin duda, tres posibilidades que se abren muy prometedoras en la investigación de la progeria.

Estructura nuclear normal de célula sana (arriba) frente a desorganizada de célula HGPS (abajo)

¿Pero, qué tiene todo esto que ver con el envejecimiento natural? En teoría, el estudio de los síndromes de envejecimiento prematuro puede ofrecer una visión sobre el proceso natural de envejecimiento. Pero esto es algo muy controvertido. No está claro que lo que sucede en una persona que muestra signos (algunos) de envejecimiento drásticos debido a un defecto genético concreto, nos pueda aportar toda la información relevante con respecto al complejo proceso multifactorial del envejecimiento. Hay investigadores que han comenzado a seguirle la pista a la lamin A en células de personas sanas, a lo largo del envejecimiento, y es posible que tenga algún papel, pero no está claro que sea un factor determinante. Del mismo modo que hay gente investigando HGPS para entender mejor el envejecimiento natural, Izpisúa y Colman proponen también que usando sus iPS de HGPS podremos entender mejor el envejecimiento natural. De ahí que como se han hecho eco algunos medios de comunicación, Izpisúa haya declarado: “estudiaremos en 15 días un proceso que lleva 80 años“. Sin duda, un titular muy llamativo.

Actualización: Para oir mi intervención en esRadio comentando este artículo y otro relacionado con el ejercicio físico (ver esta entrada) pueden acceder al audio aquí (a partir del minuto 12).

– El artículo original del grupo de Juan Carlos Izpisúa en Nature:

Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Iii JY, & Belmonte JC (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature PMID: 21346760

– El artículo del grupo de Alan Colman en Cell Stem Cell:

Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, & Colman A (2011). A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell stem cell, 8 (1), 31-45 PMID: 21185252

– Más información sobre la progeria en la página de la “Progeria Research Foundation”: http://www.progeriaresearch.org/

2 thoughts on “Reprogramando la progeria

  1. EXELENTE ARTICULO, PERO HAY ALGUNO QUE CORRELACIONE LA ACTIVIDAD DE LOS MISMOS EN CELULAS VEGETALES? PREGUNTO ESPECIFICAMENTE PORQUE EN LAS VIDES YA PARECE QUE NATURALMENTE AL CORTAR EL “SARMIENTO” LA MISMA POSEE LA “HABILIDAD NATURAL DE “RE-CREARSE” DE NUEVO EN UNA PLANTA “JOVEN” . ALGUIEN SE TOMO EL TRABAJO DE INVESTIGAR LOS TELOMEROS Y LA SECUENCIA DE A-G-C-G EN LAS SECRESIONES DE LOS BORDES DE LA MISMA??? SI ES ASI DONDE SE PUEDE OBTENER DICHA INFORMACION?? GRACIAS.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s